SEction 4.2

Problem 103. Find the arc length of $\vec{c}(t)=(2 t) \vec{i}+(\ln t) \vec{j}+\left(t^{2}\right) \vec{k}$ for $1 \leq t \leq 2$.
Problem 104. Find the arc length of $\vec{c}(t)=(\sin 3 t) \vec{i}+(\cos 3 t) \vec{j}+2 t^{\frac{3}{2}} \vec{k}$ for $1 \leq t \leq 2$.
Section 4.3

Problem 105. Show that the path $\vec{c}(t)=(2 \cos t, 2 \sin t)$ is a flow line of the vector field

$$
\vec{F}(x, y)=-y \vec{i}+x \vec{j} .
$$

Problem 106. Show that the path $\vec{c}(t)=\left(t^{2}, 2 t-1, \sqrt{t}\right), t>0$ is a flow line of the vector field

$$
\vec{F}(x, y, z)=\left(y+1,2, \frac{1}{2 z}\right) .
$$

Section 4.4

Problem 107. Given a function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$, the Laplacian of f, denoted by Δf, is a very important differential operator. It is defined to be $\Delta f:=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}+\frac{\partial^{2} f}{\partial z^{2}}$.
a) Show that $\Delta f=\operatorname{tr}$ Hess f. Remember that the trace (tr) of a matrix is the sum of the terms in its diagonal positions.
b) Show that $\Delta f=\nabla \cdot(\nabla f)$.

Problem 108. Let $f(x, y, z)=x^{2}+y^{2}+z^{2}$. Compute ∇f and then compute $\nabla \times(\nabla f)$.
Problem 109. Let $\vec{v}(x, y, z)=(x y, y z, z x)$. Compute $\nabla \times \vec{v}$ and then compute $\nabla \cdot(\nabla \times \vec{v})$.
Problem 110. Calculate the divergence and curl of the vector fields $\vec{F}(x, y, z)=x \vec{i}+y \vec{j}+z \vec{k}$.
Problem 111. Let $\vec{F}(x, y, z)=\left(x^{2}, x^{2} y, z+z x\right)$. Compute $\nabla \cdot(\nabla \times \vec{F})$. Show that, given any vector field $\vec{F}(x, y, z)=\left(f_{1}, f_{2}, f_{3}\right)$, the identity

$$
\nabla \cdot(\nabla \times v)=0
$$

is always satisfied. This identity is important in the study of electromagnetism.
Problem 112. Show that if $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ then

$$
\nabla \times(\nabla f)=0
$$

This is another identity important in the study of electromagnetism. In fact, something stronger is true: if a vector field $\vec{v}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ satisfies $\nabla \times \vec{v}=0$, then there exists some function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ such that $\vec{v}=\nabla f$.
Problem 113. Consider the vector field $\vec{v}(x, y, z)=(y, x, 1)$. In the view of the problem above, is there any function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ such that $\vec{v}=\nabla f$?

