PROBLEMS SECTION 4 MATH 10A, Summer Session E, UC Riverside 2018

Section 4.2

Problem 103. Find the arc length of $\vec{c}(t) = (2t)\vec{i} + (\ln t)\vec{j} + (t^2)\vec{k}$ for $1 \le t \le 2$.

Problem 104. Find the arc length of $\vec{c}(t) = (\sin 3t)\vec{i} + (\cos 3t)\vec{j} + 2t^{\frac{3}{2}} \vec{k}$ for $1 \le t \le 2$.

Section 4.3

Problem 105. Show that the path $\vec{c}(t) = (2\cos t, 2\sin t)$ is a flow line of the vector field

$$\vec{F}(x,y) = -y\vec{i} + x\vec{j}.$$

Problem 106. Show that the path $\vec{c}(t) = (t^2, 2t - 1, \sqrt{t}), t > 0$ is a flow line of the vector field

$$\vec{F}(x, y, z) = (y + 1, 2, \frac{1}{2z}).$$

Section 4.4

Problem 107. Given a function $f : \mathbb{R}^3 \to \mathbb{R}$, the Laplacian of f, denoted by Δf , is a very important differential operator. It is defined to be $\Delta f := \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}$.

- a) Show that $\Delta f = \text{tr Hess } f$. Remember that the trace (tr) of a matrix is the sum of the terms in its diagonal positions.
- b) Show that $\Delta f = \nabla \cdot (\nabla f)$.

Problem 108. Let $f(x, y, z) = x^2 + y^2 + z^2$. Compute ∇f and then compute $\nabla \times (\nabla f)$.

Problem 109. Let $\vec{v}(x, y, z) = (xy, yz, zx)$. Compute $\nabla \times \vec{v}$ and then compute $\nabla \cdot (\nabla \times \vec{v})$.

Problem 110. Calculate the divergence and curl of the vector fields $\vec{F}(x, y, z) = x\vec{i} + y\vec{j} + z\vec{k}$.

Problem 111. Let $\vec{F}(x, y, z) = (x^2, x^2y, z + zx)$. Compute $\nabla \cdot (\nabla \times \vec{F})$. Show that, given any vector field $\vec{F}(x, y, z) = (f_1, f_2, f_3)$, the identity

$$abla \cdot (
abla \times v) = 0$$

is always satisfied. This identity is important in the study of electromagnetism.

Problem 112. Show that if $f : \mathbb{R}^3 \to \mathbb{R}$ then

$$\nabla \times (\nabla f) = 0$$

This is another identity important in the study of electromagnetism. In fact, something stronger is true: if a vector field $\vec{v} : \mathbb{R}^3 \to \mathbb{R}^3$ satisfies $\nabla \times \vec{v} = 0$, then there exists some function $f : \mathbb{R}^3 \to \mathbb{R}$ such that $\vec{v} = \nabla f$.

Problem 113. Consider the vector field $\vec{v}(x, y, z) = (y, x, 1)$. In the view of the problem above, is there any function $f : \mathbb{R}^3 \to \mathbb{R}$ such that $\vec{v} = \nabla f$?