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ODEs.

Problem 1. Suppose f(t, y) : R×Rn → R is continuous on R: t0 ≤ t ≤ t0 + a, |y − y0| ≤ b, and
uniformly Lipschitz continuous with respect to u in R. Let M be an upper bound for |f(t, y)| on R
and α := min(a, b/M). Prove that

dy

dt
= f(t, y) y(t0) = y0

has a solution on [t0, t0 + α].

[Source: HW1 2015, 2017, Midterms 2015, 2017, A. Moradifam]

Laplace’s equation.

Problem 2. Prove that if u ∈ C2(Ω) is harmonic, then

u(x) =

 
∂B(x,r)

udS,

for all B(x, r) ⊂ Ω.

[Source: Midterm 2015, A. Moradifam]

Problem 3. (Harnack’s Inequality) Let V ⊂⊂ Ω. Prove that there exists a constant C, depending
only on V , such that

sup
V
u ≤ C inf

V
u

for all nonnegative harmonic functions u in Ω.

[Source: Midterm 2017, A. Moradifam]

Problem 4. Let u ∈ C2(Ω) ∩ C(Ω̄) solve the Laplace equation

−∆u = f on Ω,

with u = g on ∂Ω. Prove that there exists a constant C, independent of u, such that

max
Ω
|u| ≤ C(max

∂Ω
|g|+ max

Ω
|f |).

[Source: HW3 2015, 2017 (Evans Ch. 2), Midterms 2015, 2017, A. Moradifam]

Problem 5. Let u1, u2 ∈ C2(Ω) solve the Laplace equation{
∆u = f in Ω
∂u
∂ν = g on ∂Ω.

Prove that u2 − u1 = c, where c is a constant.

[Source: Final 2017, A. Moradifam]



Problem 6. Let
A := {ω ∈ C2(Ω̄) : ω = g on ∂Ω}

and define I : A → R by

I(ω) :=

ˆ
Ω

|Dω|2

2
− ωfdx.

Prove that u ∈ A is a minimizer of I in A if and only if u solves the Laplace equation

−∆u = f

[Source: Final 2015, Midterm 2017, A. Moradifam]

Problem 7. Suppose u ∈ C2(Ω̄) solves the equation{
∆u = g, in Ω

u = ∂u
∂ν = 0, on ∂Ω,

where ν is the outward unit normal vector on ∂Ω. Prove that

ˆ
Ω
gϕdx = 0

for every harmonic function ϕ ∈ C(Ω̄).

[Source: Midterm 2017, A. Moradifam]

Problem 8. Let (un)∞n=1 be a sequence of harmonic functions defined on an open bounded subset

U of Rd, d ≥ 2. Assume that un → u uniformly on U . Prove that u is harmonic on U .

[Source: Qual 2015, Final 2014, J. Kelliher]

Heat equation.

Problem 9. Let u ∈ C2
1(ΩT ) solve the heat equation. Prove that

u(x, t) =
1

4rn

ˆ ˆ
E(x,t;r)

u(y, s)e
− |x−y|2

(t−s)2 dyds,

for every heat ball E(x, t; r) ∈ ΩT . Note that

E(x, t; r) = {(y, s) ∈ Rn+1 : s ≤ t, 1

(4π(t− s))n/2
e
− |x−y|2

4(t−s) ≥ 1

rn
}

and

1

rn

ˆ ˆ
E(r)

|y|2

s2
dyds = 4

where E(r) = E(0, 0; r).

[Source: Final 2017, A. Moradifam]

Problem 10. (Strong maximum principle for the heat equation) Let Ω ⊂ Rn and T > 0 and
suppose u ∈ C∈∞(ΩT )∩C(Ω̄T ) solves the heat equation in ΩT . Prove that if Ω is connected and there
exists (x0, t0) ∈ ΩT such that

u(x0, t0) = max
Ω̄T

u,

then u is constant in Ω̄t0. Hint: Use the mean-value property for the heat equation:



u(x, t) =
1

4rn

ˆ ˆ
E(x,t;r)

u(y, s)
|x− y|2

(t− s)2
dyds,

where E(x, t; r) is the heat ball centered at (x, t).

[Source: Final 2015, A. Moradifam]

Problem 11. Let g ∈ C(Rn) ∩ L∞(Rn) and define

u(x, t) =

ˆ
Rn

Φ(x− y, t)g(y)dy

where Φ is the fundamental solution of the heat equation (Φ(x, t) = 1
(4πt)n/2 e

−
|x|2

4t
). Prove that u

solves the heat equation and

lim
(x,t)→(x0,0+)

u(x, t) = g(x0),

for all x0 ∈ Rn.

[Source: Midterm 2015, Final 2017, A. Moradifam]

Problem 12. (Backwards Uniqueness for the heat equation) Suppose u, ũ ∈ C2(ŪT ) solve the heat
equation {

ut −∆u = 0 in Ω× (0, T ]

u = g on ∂Ω× [0, T ],

Prove that if u(x, T ) = ũ(x, T ) (x ∈ Ω), then

u = ũ in Ω× (0, T ].

[Source: Qual 2016, A. Moradifam]

Problem 13. Let u(x, t) = v
(
x2

t

)
. (a) Show that

ut − uxx = 0

if and only if

4z
∂2v

∂z2
+ (2 + z)

∂v

∂z
(z) = 0, z > 0.

(b) Use part (a) to obtain the fundamental solution of the heat equation in dimension n = 1.

[Source: HW4 2015, 2017 (modified from Evans Ch. 2), Final 2015, A. Moradifam]

Wave equation.

Problem 14. (a) Show that the general solution of the PDE uxy = 0 is

u(x, y) = F (x) +G(y)

for arbitrary functions F and G.
(b) Using the change of variable ξ = x+ t, η = x− t, show that uξη = 0 if and only if

utt − uxx = 0.



(c) Use (a) and (b) to prove that the general solution of the wave equation in dimension one is
given by

u(x, t) =
1

2
[g(x+ t) + g(x− t)] +

1

2

ˆ x+t

x−t
h(y)dy

[Source: Final 2015, Final 2017 (Evans Ch. 2), A. Moradifam]

Problem 15. (Finite speed of propagation for solutions of the wave equation) Suppose u ∈ C2(Rn×(0,∞))
solves the wave equation. Prove that if u = ut = 0 on B(x0, t0)× {0}, then u ≡ 0 within the cone

C = {(x, t) : 0 ≤ t ≤ t0, |x− x0| ≤ t0 − t}
Hint: consider the energy functional

e(t) =
1

2

ˆ
B(x0,t0−t)

u2
t (x, t) + |Du(x, t)|2dx (0 ≤ t ≤ t0)

[Source: Final 2015, Qual 2016, Final 2017, A. Moradifam]

Problem 16. Assume that u is a smooth solution to the wave equation in Rd, d ≥ 1, in the form

∂ttu = ∆u.

Define the energy-density e(t, x) := 1
2(∂tu)2 + 1

2 |∇u|
2.

(a) Show that for d = 1, e itself satisfies the one-dimensional wave equation.
(b) Show that e does not, in general, satisfy the d-dimensional wave equation for d ≥ 2.
(c) Suppose that u ∈ C∞(R×Rd), d ≥ 1, and compactly supported in space for all t. Show that

ˆ
Rd

(∂tte(t, x)−∆e(t, x))dx = 0

[Source: Qual 2015, J. Kelliher]

Other equations.

Problem 17. Write down an explicit formula for a function u solving the equation{
ut − b · ∇u+ cu = 0 in Rn×(0,∞)

u = g on Rn×{t = 0},
where c ∈ R and b ∈ Rn are constant.

[Source: HW2 2015, 2017 (Evans Ch.2), Qual 2016, A. Moradifam]

Problem 18. Suppose u is an integral solution of

ut + F (u)x = 0,

and u ∈ C1((R×(0,∞)) \ Γ), where Γ is a one dimensional curve. Prove that if u is discontinuous
on Γ, then it should satisfy the jump condition

(F (ul)− F (ur))η
1 + (ul − ur)η2 = 0,

where (η1, η2)(x) is the normal to the curve Γ at x.

[Source: Final 2015 (Evans 3.4.1), A. Moradifam]
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Flow maps.

Problem 19. Let u(t, x) be a time-varying vector field on Rd.
(a) Define what it means for X : R×Rd → Rd to be a flow map for u.
(b) Assume that u1, u2 are Lipschitz continuous vector fields with Lipschitz constants M1, M2

for all t ∈ R; that is, |uj(t, x)− uj(t, y)| ≤Mj |x− y|, j = 1, 2, for all t ∈ R, x, y ∈ Rd. Let
X be the flow map for u := u1 + u2 and Xj be the flow map for uj, j = 1, 2 (you do not
need to prove that such flow maps exist and are unique). Show that

|X(t, x)−X1(t, x)| ≤M2te
M1t.

[Source: Qual 2016, J. Kelliher]

Problem 20. Let v(t, x) be a time-varying vector field on Rd.
(a) Define what it means for X : R×Rd → Rd to be a flow map for v.
(b) Suppose that v is uniformly Lipschitz-continuous in space; that is,

|v(t, x)− v(t, y)| ≤M |x− y| for all x, y ∈ Rd

for some M > 0. Prove that there exists a flow map for v.
(c) Prove that the flow map for v is unique.

[Source: Qual 2015, J. Kelliher]

Problem 21. Let A(t) be a continuous function from t in R to the space of square, real-valued
matrices.

(a) Show that for every solution of the (non-autonomous) linear system, ẋ = A(t)x, we have

‖x(t)‖ ≤ ‖x(0)‖e
´ t
0 ‖A(s)‖ds,

where ‖A(s)‖ is the operator norm and ‖x(t)‖ is the usual Euclidean norm.

(b) Show that if
´ t

0 ‖A(s)‖ds <∞ then every solution, x(t), has a finite limit as t→∞.

[Source: Final 2014, J. Kelliher]

Method of characteristics.

Problem 22. In this problem, we will seek a solution in the upper half plane to{
−y∂xu+ x∂yu = au for x ∈ R, y ≥ 0,

u(x, 0) = ψ(x) for x ≥ 0,

where a is a real constant and ψ : [0,∞)→ R is differentiable with ψ(0) = ψ′(0) = 0.

(a) What are the characteristic equations for this PDE?
(b) Solve the characteristic equations.
(c) Use the solution in (b) to the characteristic equations to obtain an explicit solution to the

PDE in the form u = u(x, y).
(d) Show that any compactly supported, differentiable solution to our PDE is unique whenever

a ≤ 0. Hint: rewrite the PDE in the form x⊥ · ∇u = au, where x⊥ = (−y, x), and make
an energy argument. (The fact that div x⊥ = 0 will be very useful).

[Source: Midterm 2018, J. Kelliher]



Problem 23. Consider Burger’s equation on the half-line, r ∈ (0,∞), with a non-linear forcing
term: {

∂tv + v∂rv = −v2

r for t ∈ (0,∞), r ∈ (0,∞),

v = v0 for t = 0, r ∈ (0,∞).

Assume that v0 ∈ C∞[0,∞) with v0(0) = 0 [note this implies that limr→0+ v
2(r)/r = 0].

In this problem, you will be asked to use the method of characteristics. As in any such problem,
it is always possible that the characteristic projections will collide at some time, T1 ≥ 0, meaning
that if T ≥ 0 is the time of existence of a classical solution, then T ≤ T1.

But because we are working on a half-line, a classical solution can also cease to exist because
a characteristic projection reaches r = 0 for some t = T2 > 0, taking it outside the domain of
solution. This means that also T ≤ T2, and hence T = min{T1, T2}.

(a) Show that if we parametrize each characteristic by time and write each characteristic in the
form t 7→ (r(t), v(r(t))) with r(0) = r0, then:

r(t)2 = r2
0 + 2r0v0(r0)t,

v(t, r(t)) =
r0v0(r0)

r(t)

(b) Show that

T1 = inf
r0>s0>0

r2
0 − s2

0

2(s0v0(s0)− r0v0(r0)

(c) Show that

T2 = inf
r0>0

(
− r0

2v0(r0)

)
[Source: Midterm 2018, J. Kelliher]

Problem 24. (a) In the plane, solve the equation y ∂u∂x − 4x∂u∂y = 0 with the condition that

u(0, y) = f(y) for all y ∈ R. Assume that f ∈ C∞(R) and find only C∞(R2) solutions.
(b) Is the problem solvable uniquely in the full plane for all f ∈ C∞(R2)? If not, what additional

property or properties of f is or are required for the problem to be solvable in the full plane?
(Remember that we seek only C∞ solutions).

[Source: Qual 2016, J. Kelliher]

Problem 25. Let v(t, x) be as in problem 20 above in part (b), and suppose that ρ = ρ(t, x) solves

∂tρ+ v · ∇ρ = ρ2,

ρ(0) = ρ0,

where ρ0 is continuous and bounded on Rd. Suppose that ρ0(x) ≤ M for all x ∈ Rd. Express
the maximum possible time of existence of ρ in terms of M. (You need not actually prove existence
however.)

Hint: Use the result of the problem 20 above - you can do so even if you didn’t solve it.

[Source: Qual 2015, J. Kelliher]



Fourier Transform.

Problem 26. Solve the following initial value problem using the Fourier transform:{
∂ttu+ c2∂xxxxu = 0 in (0,∞)× R,
u = f, ∂tu = g on {0} × R .

Give your answer in the form of an inverse Fourier transform.

[Source: Qual 2015, Final 2018, J. Kelliher]

Sobolev spaces.

Problem 27. Fix d ≥ 1, let U be an open subset of Rd, and let p ∈ [1,∞]. For any u ∈W 1,p(Rd)
let R(u) = u|U . Show that this defines a continuous linear operator from W 1,p(Rd) to W 1,p(U).

[Source: Final 2018, J. Kelliher]

Problem 28. Let U ⊆ Rd be open.

(a) Integrate by parts to prove the interpolation inequality,

‖∇u‖L2 ≤ ‖u‖1/2
L2 ‖∆u‖

1/2
L2

for all u ∈ C∞c (U).
(b) Assume now that U is bounded with smooth boundary. Prove that the same inequality as in

(a) holds for all u ∈ H2(U) ∩H1
0 (U).

[Source: Final 2018, J. Kelliher]

Problem 29. Let U be a bounded, open set in Rn with smooth boundary. Show that

‖Du‖2L2(U) ≤ C‖u‖L2(U)‖D2u‖L2(U) for all u ∈ H2
0 (U)

where C does not depend on u.

[Source: Midterm 2015, J. Kelliher]

Problem 30. Prove or disprove the following:

Let U be a bounded, open subset of R2. If u ∈W 1,2(U), then u ∈ L∞(U) with the estimate

‖u‖L∞(U) ≤ C‖u‖W 1,2(U)

where C does not depend on u.

[Source: Midterm 2015, J. Kelliher]

Problem 31. Let U be the open unit ball in Rd.
(a) Let

u(x) = |x|−α.
Determine which values of α > 0, d ≥ 1, and p > 1 give u in W 1,p(U).

(b) Show that

u(x) = log log
(
1 + |x|−1

)
belongs to W 1,2(U) but does not belong to L∞(U).

[Source: Qual 2016, J. Kelliher]



Problem 32. (a) Let u be a function on Rd. For any h ∈ Rd, define τhu = u(· − h): this is
translation of u by h. Show that

‖τhu− u‖Lp ≤ |h|‖∇u‖Lp

for any 1 ≤ p <∞.
Suggestion: For 1 ≤ p <∞, use the fundamental theorem of calculus trick/technique.

(b) Now assume that p ∈ (d,∞]. Take as a given the following lemma:
Lemma: For all p ∈ (d,∞],

‖u‖∞ ≤ C1‖u‖Lp + C2‖∇u‖Lp ,

where C1 and C2 depend on p and d.

Use this lemma to show that for all u ∈W 1,p(Rd),

‖u‖L∞ ≤ C‖u‖1−θLp ‖∇u‖θLp ,

where θ = d/p. Suggestion: First make a scaling argument to show that

‖u‖L∞ ≤ C1λ
d
p ‖u‖Lp + C2λ

−1+ d
p ‖∇u‖Lp .

for any λ > 0. (That is, apply the lemma to u(·/λ)). Then choose the optimal λ to obtain
the result.

(c) Conclude from (a) and (b) that for all u ∈W 1,p(Rd), p ∈ (d,∞],

|u(x)− u(y)| ≤ C|x− y|γ‖∇u‖Lp

for γ = 1− d/p.

Note: This provides an alternative proof of Morrey’s inequality (given a proof of the
lemma above).

[Source: Final 2016, J. Kelliher]

Others.

Problem 33. Using separation of variables, solve the wave equation with homogeneous Dirichlet
boundary conditions on (t, x) ∈ R×(0, L),

∂ttu = c2∂xxu,

u(t, 0) = u(t, L) = 0,

u(0, x) = f(x),

∂tu(0, x) = g(x).

You can assume that f, g ∈ C∞((0, L)).

[Source: Final 2018, J. Kelliher]

Problem 34. Consider the one-dimensional conservation law,{
∂tu+ ∂xF (u) = 0,

u(0) = g,

with initial data

g(x) =

{
ul if x < 0,

ur if x > 0.



This is called the Riemann problem. The solution is to be on (0,∞) × R (time × space). We
assume that F is smooth and uniformly strictly convex (that is, F ′′ > c > 0 for some constant c)
and that ul and ur are constants.

(a) Define what it means for u to be an entropy solution to the one-dimensional conservation
law.

(b) Show that if ul > ur then

u(t, x) =

{
ul if x

t < σ,

ur if x
t > σ

is an entropy solution to Riemann’s problem, where

σ :=
F (ul)− F (ur)

ul − ur
.

[Source: Qual 2015, J. Kelliher]

207C material

Maximum Principles for elliptic and parabolic operators.

Problem 35. Suppose u is a smooth solution to{
∆u = u3 + u in U

u = 0 on ∂U

Show that u ≡ 0 in U using maximum principle.

[Source: Final 2018, P.N. Chen]

Problem 36. Prove that there is at most one smooth solution of
ut −∆u = f in UT
∂u
∂ν = 0 on ∂U × [0, T ]

u = g on U × {0}

[Source: Final 2018, HW, P.N. Chen, Evans’ Ch 7]

Problem 37. Suppose u is a smooth solution to
ut −∆u+ cu = 0

u = 0

u = g

where the function c satisfies c ≥ δ > 0. Show that |u(x, t)| ≤ Ce−γt.

[Source: Final 2018, HW, P.N. Chen, Evans’ Ch 7]

Problem 38. Assume that u is a smooth solution of the PDE from the problem above, that g ≥ 0,
and that c is bounded (but not necessarily nonnegative). Show u ≥ 0.

Hint: What PDE does v := e−λtu solve?

[Source: P.N. Chen’s HW, Evans’ Ch7]



Problem 39. Assume U is connected. Use (a) energy methods and (b) the maximum principle to
show that the only smooth solutions of the Neumann boundary-value problem{

−∆u = 0 in U
∂u
∂ν = 0 on ∂U

are u ≡ C for some constant C.

[Source: P.N. Chen’s HW, Evan’s Ch 6]

Problem 40. We say that the uniformly elliptic operator

Lu = −
n∑

i,j=1

aijuxixj +
n∑
i=1

biuxi + cu,

satisfies the weak maximum principle if for all u ∈ C2(U) ∩ C(Ū),{
Lu ≤ 0 in U,

u ≤ 0 on ∂U,

implies that u ≤ 0 on U .
Suppose that there exists a function v ∈ C2(U) ∩ C(Ū) such that Lv ≥ 0 in U and v > 0 on Ū .

Show that L satisfies the weak maximum principle.
Hint: Find an elliptic operator M such that w = y/v satisfies Mw ≤ 0 in the region {u > 0}.

To do this, first compute (v2wxi)xj .

[Source: Qual 2016, J. Kelliher, P.N. Chen’s HW, Evan’s Ch6]

Problem 41. Let Lu be defined as:

Lu = −
n∑

i,j=1

aij(x, t)uxixj +
n∑
i=1

bi(x, t)uxi + c(x, t)u.

Suppose u ∈ C2
1(UT ) ∩ C0(ŪT ) satisfies

ut + Lu ≥ 0, in UT .

Assume c(x, t) ≥ m with m being a fixed constant (either positive or negative), show that if u ≥ 0
on ΓT , then u ≥ 0 in ŪT .

[Source: Qual 2016, J. Kelliher]

Sobolev Spaces.

Problem 42. Consider a function u : (−1, 1)→ R given by u(x) = |x|.
a) Show that u is Lipschitz continuous but not continuously differentiable.
b) Show that u is weakly differentiable and find the weak derivative.
c) How about the second weak derivative? Find the distributional derivative and weak derivative

of u′ if possible; if not, explain why.

[Source: Qual 2015, J. Zhang or J. Kelliher]

Problem 43. Verify thatt if n > 1, the unbounded function u = log log
(

1 + 1
|x|

)
belongs to

W 1,n(U), for U = B0(0, 1).

[Source: Po-Ning’s HW, Evans’ Ch.5]



Problem 44. Fix α > 0 and let U = B0(0, 1). Show there exists a constant C, depending only on
n and α, such that ˆ

U
u2dx ≤ C

ˆ
U
|Du|2dx,

provided

|{x ∈ U : u(x) = 0}| ≥ α, u ∈ H1(U)

[Source: Po-Ning’s HW, Evans’ Ch.5]

Problem 45. (Variant of Hardy’s inequality) Show that for each n ≥ 3 there exists a constant C
so that ˆ

Rn

u2

|x|2
dx ≤ C

ˆ
Rn
|Du|2dx

for all u ∈ H1(Rn).

Hint: |Du+ λ x
|x|2u|

2 ≥ 0 for each λ ∈ R.

[Source: Po-Ning’s HW, Evans’ Ch.5]

Existence of solutions.

Problem 46. Let

Lu = −
n∑

i,j=1

(aijuxi)xj + cu.

Prove that there exists a constant µ > 0 such that the corresponding bilinear form B[·, ·] satisfies
the hypothesis of the Lax-Milgram Theorem, provided

c(x) ≥ −µ (x ∈ U).

[Source: P.N. Chen’s HW, Evan’s Ch 6]

Problem 47. A function u ∈ H2
0 (U) is a weak solution of this boundary-value problem for the

biharmonic equation {
∆2u = f in U

u = ∂u
∂ν = 0 on ∂U

provided

ˆ
U

∆u∆vdx =

ˆ
U
fvdx

for all v ∈ H2
0 (U). Given f ∈ L2(U), prove that there exists a unique weak solution of this

problem.

[Source: P.N. Chen’s HW, Evan’s Ch 6]

Problem 48. Let U be a connected, bounded open set in Rn. We say that u ∈ H1(U) is weak
solution of {

−∆u = f in U
∂u
∂ν = 0 on ∂U

if



ˆ
U
Du ·Dvdx =

ˆ
U
fvdx for all v ∈ H1(U).

Suppose f ∈ L2(U). Prove that there exists a weak solution to the problem above if and only if´
U fdx = 0.

[Source: Qual 2015, J. Zhang or J. Kelliher, P.N. Chen’s HW, Evan’s Ch 6]

Problem 49. Consider the following Dirichlet problem{
−∆u+ µu = f in U

u = 0 on ∂U

where µ is a given nonzero constant.

a) Show the existence of a weak solution u ∈ H1
0 (U) of the problem above for µ > 0.

b) Discuss the problem when µ < 0.

[Source: Qual 2015, J. Zhang or J. Kelliher]

Problem 50. Assume U is connected. Consider the Poisson’s equation with the Neumann boundary-
value problem {

−∆u = f, on U,
∂u
∂n = 0, on ∂U.

a) State the definition of the weak solution to this problem;
b) Show that for f ∈ L2(U), the above problem has a weak solution if and only if

´
U fdx = 0;

c) If f = 0, use the energy method to show that the only smooth solutions of this problems are
u = C, for some constant C.

[Source: Qual 2016, J. Kelliher]

Others.

Problem 51. Consider Laplace’s equation with potential function c:

(1) −∆u+ cu = 0,

and the divergence structure equation:

(2) −div(aDv) = 0

where the function a is positive.

a) Show that if u solves (1) and w > 0 also solves (1), then v := u/w solves (2) for a := w2.

b) Conversely, show that if v solves (2), then u := va1/2 solves (1) for some potential c.

[Source: P.N. Chen’s HW, Evan’s Ch 6]


