Fake Qual 4
PDE Qual Prep Seminar
Xavier Ramos Olivé
Summer 2018, UC Riverside

Instructions: Work 2 out of 3 problems in each of the 3 parts for a total of 6 problems.

Part 1

Problem 1. Let $u(x, t)=v\left(\frac{x^{2}}{t}\right)$.
a) Show that

$$
u_{t}-u_{x x}=0
$$

if and only if

$$
4 z v^{\prime \prime}(z)+(2+z) v^{\prime}(z)=0, z>0
$$

b) Use part (a) to obtain the fundamental solution of the heat equation in dimension $n=1$.

Problem 2. (Finite speed of propagation for solutions of the wave equation) Suppose $u \in \mathcal{C}^{2}\left(\mathbb{R}^{n} \times(0, \infty)\right)$ solves the wave equation. Prove that if $u=u_{t}=0$ on $B\left(x_{0}, t_{0}\right) \times\{0\}$, then $u \equiv 0$ within the cone

$$
C=\left\{(x, t): 0 \leq t \leq t_{0},\left|x-x_{0}\right| \leq t_{0}-t\right\}
$$

Hint: consider the energy functional

$$
e(t)=\frac{1}{2} \int_{B\left(x_{0}, t_{0}-t\right)} u_{t}^{2}(x, t)+|D u(x, t)|^{2} d x\left(0 \leq t \leq t_{0}\right)
$$

Problem 3. (Harnack's inequality) Show that for each connected open set $V \subset \subset U$, there exists a positive contant C, depending only on V, such that

$$
\sup _{V} u \leq C \inf _{V} u
$$

for all nonnegative harmonic functions u in U.

Problem 4. Let $\mathbf{u}(t, x)$ be a time-varying vector field on \mathbb{R}^{d}.
a) Define what it means for $X: \mathbb{R} \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ to be a flow map for \mathbf{u}.
b) Assume that $\mathbf{u}_{1}, \mathbf{u}_{2}$ are Lipschitz continuous vector fields with Lipschitz constants M_{1}, M_{2} for all $t \in \mathbb{R}$; that is $\left|\mathbf{u}_{j}(t, x)-\mathbf{u}_{j}(t, y)\right| \leq M_{j}|x-y|, j=1,2$, for all $t \in \mathbb{R}, x, y \in \mathbb{R}^{d}$. Let X be the flow map for $\mathbf{u}:=\mathbf{u}_{1}+\mathbf{u}_{2}$ and X_{j} be the flow map for $j=1,2$ (you do not need to prove that such flow maps exist and are unique). Show that

$$
\left|X(t, x)-X_{1}(t, x)\right| \leq M_{2} t e^{M_{1} t}
$$

Problem 5. Fix $d \geq 1$, let U be an open subset of \mathbb{R}^{d}, and let $p \in[1, \infty]$. For any $u \in W^{1, p}\left(\mathbb{R}^{d}\right)$ let $R(u)=u_{\left.\right|_{U}}$. Show that this defines a continuous linear operator from $W^{1, p}\left(\mathbb{R}^{d}\right)$ to $W^{1, p}(U)$.

Problem 6. Let $\mathbf{u}(t, x)$ be a vector field as in problem 4 in part b), and suppose that $\rho=\rho(t, x)$ solves

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\mathbf{u} \cdot \nabla \rho=\rho^{2} \\
\rho(0)=\rho_{0}
\end{array}\right.
$$

where ρ_{0} is continuous and bounded on \mathbb{R}^{d}. Suppose that $\rho_{0}(x) \leq M$ for all $x \in \mathbb{R}^{d}$. Express the maximum possible time of existence of ρ in terms of M. (You need not actually prove existence, however; and you can use existence and uniqueness of flow maps for \mathbf{u} without proof).

PART 3

Problem 7. Let U be a bounded domain in \mathbb{R}^{d} with a \mathcal{C}^{∞} boundary. Assume that $u \in \mathcal{C}^{2}(\bar{U}) \cap H_{0}^{1}(U)$ is a strong solution to

$$
\begin{cases}\Delta u=u^{3}+u & \text { in } U \\ u=0 & \text { on } \partial U\end{cases}
$$

Note that $u \equiv 0$ is clearly a solution, but this is a nonlinear problem, so we have no general uniqueness theorem that covers it.
a) Use the weak maximum principle to show that $u \equiv 0$ is the only solution.
b) Show the same thing using an energy method.

Problem 8. We say that the uniformly elliptic operator

$$
L u=-\sum_{i, j=1}^{n} a^{i j} u_{x_{i} x_{j}}+\sum_{i=1}^{n} b^{i} u_{x_{i}}+c u
$$

satisfies the weak maximum principle if for all $u \in \mathcal{C}^{2}(U) \cap \mathcal{C}(\bar{U})$,

$$
\begin{cases}L u \leq 0 & \text { in } U \\ u \leq 0 & \text { on } \partial U\end{cases}
$$

implies that $u \leq 0$ on U.
Suppose that there exists a function $v \in \mathcal{C}^{2}(U) \cap \mathcal{C}(\bar{U})$ such that $L v \geq 0$ in U and $v>0$ on \bar{U}. Show that L satisfies the weak maximum principle.

Hint: Find an elliptic operator M such that $w=y / v$ satisfies $M w \leq 0$ in the region $\{u>0\}$. To do this, first compute $\left(v^{2} w_{x_{i}}\right)_{x_{j}}$.

Problem 9. A function $u \in H_{0}^{2}(U)$ is a weak solution of this boundary-value problem for the biharmonic equation

$$
\begin{cases}\Delta^{2} u=f & \text { in } U \\ u=\frac{\partial u}{\partial \nu}=0 & \text { on } \partial U\end{cases}
$$

provided

$$
\int_{U} \Delta u \Delta v d x=\int_{U} f v d x
$$

for all $v \in H_{0}^{2}(U)$. Given $f \in L^{2}(U)$, prove that there exists a unique weak solution of this problem.

