Fake Qual 3
PDE Qual Prep Seminar
Xavier Ramos Olivé
Summer 2018, UC Riverside

Instructions: Work 2 out of 3 problems in each of the 3 parts for a total of 6 problems.

Part 1

Problem 1. Write down an explicit formula for a function u solving the equation

$$
\begin{cases}u_{t}-b \cdot \nabla u+c u=0 & \text { in } \mathbb{R}^{n} \times(0, \infty) \\ u=g & \text { on } \mathbb{R}^{n} \times\{t=0\}\end{cases}
$$

where $c \in \mathbb{R}$ and $b \in \mathbb{R}^{n}$ are constant.

Problem 2. Let $u \in \mathcal{C}_{1}^{2}\left(\Omega_{T}\right)$ solve the heat equation. Prove that

$$
u(x, t)=\frac{1}{4 r^{n}} \iint_{E(x, t ; r)} u(y, s) \frac{|x-y|^{2}}{(t-s)^{2}} d y d s
$$

for every heat ball $E(x, t ; r) \in \Omega_{T}$. Note that

$$
E(x, t ; r)=\left\{(y, s) \in \mathbb{R}^{n+1}: s \leq t, \frac{1}{(4 \pi(t-s))^{n / 2}} e^{-\frac{|x-y|^{2}}{4(t-s)}} \geq \frac{1}{r^{n}}\right\}
$$

and

$$
\frac{1}{r^{n}} \iint_{E(r)} \frac{|y|^{2}}{s^{2}} d y d s=4
$$

where $E(r)=E(0,0 ; r)$.

Problem 3. a) Show that the general solution of the PDE $u_{x y}=0$ is

$$
u(x, y)=F(x)+G(y)
$$

for arbitrary functions F, G.
b) Using the change of variables $\xi=x+t, \eta=x-t$, show that $u_{t t}-u_{x x}=0$ iff $u_{\xi \eta}=0$.
c) Use (a) and (b) to rederive d'Alembert's formula.
d) Under what conditions on the initial data g, h is the solution u a right-moving wave? A left-moving wave?

Problem 4. Let $\mathbf{v}: \mathbb{R} \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ be a time-varying vector field. Assume that for some $M_{1}>0$, $\|\mathbf{v}\|_{L^{\infty}} \leq M_{1}$ for all $t \in \mathbb{R}$ and for some $M_{2}>0, \mathbf{v}(t)$ has a Lipschitz constant no larger than M_{2} for all $t \in \mathbb{R}$.
a) Show that for any $\left(t_{0}, \mathbf{x}_{0}\right) \in \mathbb{R} \times \mathbb{R}^{d}$, solutions to

$$
\left\{\begin{array}{l}
\mathbf{x}^{\prime}(t)=\mathbf{v}(t, \mathbf{x}(t)) \\
\mathbf{x}\left(t_{0}\right)=\mathbf{x}_{0}
\end{array}\right.
$$

are unique. (You do not need to prove existence.)
b) Define $\mathbf{Y}: \mathbb{R} \times \mathbb{R}^{d} \times \mathbb{R} \rightarrow \mathbb{R}^{d}$ by

$$
\mathbf{Y}\left(t_{0}, \mathbf{x}_{0}, t\right)=\mathbf{x}(t)
$$

where \mathbf{x} is the solution from (a). Prove that \mathbf{Y} is continuous.

Problem 5. Let $U \subseteq \mathbb{R}^{d}$ be open.
a) Integrate by parts to prove the interpolation inequality,

$$
\|\nabla u\|_{L^{2}} \leq\|u\|_{L^{2}}^{\frac{1}{2}}\|\Delta u\|_{L^{2}}^{\frac{1}{2}}
$$

for all $u \in \mathcal{C}_{c}^{\infty}(U)$.
b) Assume now that U is bounded with smooth boundary. Prove that the same inequality as in (a) holds for all $u \in H^{2}(U) \cap H_{0}^{1}(U)$.

Problem 6. Let u be a classical solution of the following initial boundary value problem:

$$
\left\{\begin{array}{l}
u_{t}=u_{x x} \quad \text { in }(a, b) \times(0, T) \\
u(a, t)=u(b, t)=0 \\
u(x, 0)=u_{0}(x)
\end{array}\right.
$$

a) Show that the solutions are unique.
b) Show that there exists a constant $\alpha>0$ such that

$$
\|u(\cdot, t)\|_{L^{2}}^{2} \leq e^{-\alpha t}\left\|u_{0}\right\|_{L^{2}}^{2}
$$

PART 3

Problem 7. Assume u is a smooth solution of

$$
\begin{cases}u_{t}-\Delta u+c u=0 & \text { in } U \times(0, \infty) \\ u=0 & \text { on } \partial U \times[0, \infty) \\ u=g & \text { on } U \times\{t=0\}\end{cases}
$$

and suppose that $g \geq 0$ and c is bounded (but not necessarily nonnegative). Show that $u \geq 0$.

Problem 8. Assume U is connected. Show that the only smooth solutions to the problem

$$
\begin{cases}-\Delta u=0 & \text { in } U \\ \frac{\partial u}{\partial \nu}=0 & \text { on } \partial U\end{cases}
$$

are $u \equiv C$ for some constant C using:
a) energy methods.
b) maximum principles.

Problem 9. Show that a solution to the problem

$$
\begin{cases}\Delta u=u^{5}-2 u^{3}+3 u & \text { in } U \\ u=1 & \text { on } \partial U\end{cases}
$$

will satisfy $-1 \leq u \leq 1$.

