Fake Qual 2

PDE Qual Prep Seminar
Xavier Ramos Olivé
Summer 2018, UC Riverside

Instructions: Work 2 out of 3 problems in each of the 3 parts for a total of 6 problems.

Part 1

Problem 1. (Equipartition of energy) Let u solve the initial-value problem for the wave equation in one dimension:

$$
\begin{cases}u_{t t}-u_{x x}=0 & \text { in } \mathbb{R} \times(0, \infty) \\ u=g, u_{t}=h & \text { on } \mathbb{R} \times\{t=0\}\end{cases}
$$

Suppose g, h have compact support. The kinetic energy is $k(t):=\frac{1}{2} \int_{-\infty}^{\infty} u_{t}^{2}(x, t) d x$ and the potential energy is $p(t):=\frac{1}{2} \int_{-\infty}^{\infty} u_{x}^{2}(x, t) d x$. Prove:
a) $k(t)+p(t)$ is constant in t,
b) $k(t)=p(t)$ for all large enough times t.

Problem 2. Assume $g \in \mathcal{C}\left(\mathbb{R}^{n}\right) \cap L^{\infty}\left(\mathbb{R}^{n}\right)$, and let

$$
u(x, t)=\frac{1}{(4 \pi t)^{n / 2}} \int_{\mathbb{R}^{n}} e^{-\frac{|x-y|^{2}}{4 t}} g(y) d y,\left(x \in \mathbb{R}^{n}, t>0\right) .
$$

Prove that

$$
\lim _{(x, t) \rightarrow\left(x_{0}, 0^{+}\right)} u(x, t)=g\left(x_{0}\right)
$$

for every $x_{0} \in \mathbb{R}^{n}$.

Problem 3. (Mean-value formulas for Laplace's equation) Prove that if $u \in \mathcal{C}^{2}(U)$ is harmonic, then for each ball $B(x, r) \subseteq U$ we have:

$$
u(x)=f_{\partial B(x, r)} u d S
$$

Problem 4. Let $\mathbf{F}: \mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be continuous in the first variable and uniformly Lipschitz continuous in the second variable with Lipschitz constant $\gamma>0$, i.e. it satisfies:

$$
\left|\mathbf{F}\left(t, \mathbf{y}_{1}\right)-\mathbf{F}\left(t, \mathbf{y}_{2}\right)\right| \leq \gamma\left|\mathbf{y}_{1}-\mathbf{y}_{2}\right|
$$

for any $\mathbf{y}_{i} \in \mathbb{R}^{n}$ and for any $t \in \mathbb{R}$. Let \mathbf{y}_{1} and \mathbf{y}_{2} be solutions in the interval $\left[t_{0}, T\right]$ to the problem:

$$
\mathbf{y}_{i}^{\prime}(t)=\mathbf{F}\left(t, \mathbf{y}_{i}(t)\right)
$$

for $i=1,2$ and $t \in\left[t_{0}, T\right]$.
a) Show that:

$$
\left|\mathbf{y}_{1}(t)-\mathbf{y}_{2}(t)\right|^{2} \leq\left|\mathbf{y}_{1}\left(t_{0}\right)-\mathbf{y}_{2}\left(t_{0}\right)\right|^{2} e^{2 \gamma\left(t-t_{0}\right)}
$$

b) Use this to prove uniqueness of solution of the corresponding Initial Value Problem.

Problem 5. a) Using the separation of variables method, find a (formal) solution of the periodic heat problem:

$$
\begin{cases}u_{t}-k u_{x x}=0 & 0<x<2 \pi, t>0 \\ u(0, t)=u(2 \pi, t), u_{x}(0, t)=u_{x}(2 \pi, t) & t \geq 0 \\ u(x, 0)=f(x) & 0 \leq x \leq 2 \pi\end{cases}
$$

where f is a smooth periodic function.
b) Show that if v is an arbitrary partial derivative of the solution u, then $v(0, t)=v(2 \pi, t)$, for all $t \geq 0$.

Problem 6. Let U be the open unit ball in \mathbb{R}^{d}.
a) Let

$$
u(x)=|x|^{-\alpha}
$$

For which values of $\alpha>0, d \geq 1$, and $p>1$ does u belong to $W^{1, p}(U)$?
b) Show that

$$
u(x)=\log \log \left(1+|x|^{-1}\right)
$$

belongs to $W^{1,2}(U)$ but does not belong to $L^{\infty}(U)$.

PART 3

Problem 7. Prove that there is at most one smooth solution of

$$
\begin{cases}u_{t}-\Delta u=f & \text { in } U_{T} \\ \frac{\partial u}{\partial \nu}=0 & \text { on } \partial U \times[0, T] \\ u=g & \text { on } U \times\{0\}\end{cases}
$$

Problem 8. Let u be a solution of $\Delta u=u^{3}-u$ on a bounded domain Ω. Assume that $u=0$ on $\partial \Omega$. Show that $u \in[-1,1]$ throughout Ω. Can the values ± 1 be achieved?

Problem 9. Consider the Poisson equation with Dirichlet boundary condition:

$$
\begin{cases}-\Delta u=f & \text { in } U \\ u=0 & \text { on } \partial U\end{cases}
$$

where U is a bounded, open subset of \mathbb{R}^{n} and $f \in L^{2}(U)$. We know there exists a weak solution $u \in H_{0}^{1}(U)$. Prove that $u \in H_{l o c}^{2}(U)$.

