Fake Qual 2 PDE Qual Prep Seminar Xavier Ramos Olivé Summer 2018, UC Riverside

Instructions: Work 2 out of 3 problems in each of the 3 parts for a total of 6 problems.

Part 1

Problem 1. (Equipartition of energy) Let u solve the initial-value problem for the wave equation in one dimension:

$$\begin{cases} u_{tt} - u_{xx} = 0 & \text{in } \mathbb{R} \times (0, \infty) \\ u = g, \ u_t = h & \text{on } \mathbb{R} \times \{t = 0\}. \end{cases}$$

Suppose g,h have compact support. The kinetic energy is $k(t) := \frac{1}{2} \int_{-\infty}^{\infty} u_t^2(x,t) dx$ and the potential energy is $p(t) := \frac{1}{2} \int_{-\infty}^{\infty} u_x^2(x,t) dx$. Prove:

a) k(t) + p(t) is constant in t,

b) k(t) = p(t) for all large enough times t.

Problem 2. Assume $g \in C(\mathbb{R}^n) \cap L^{\infty}(\mathbb{R}^n)$, and let

$$u(x,t) = \frac{1}{(4\pi t)^{n/2}} \int_{\mathbb{R}^n} e^{-\frac{|x-y|^2}{4t}} g(y) dy, (x \in \mathbb{R}^n, t > 0).$$

Prove that

$$\lim_{(x,t)\to(x_0,0^+)} u(x,t) = g(x_0)$$

for every $x_0 \in \mathbb{R}^n$.

Problem 3. (Mean-value formulas for Laplace's equation) Prove that if $u \in C^2(U)$ is harmonic, then for each ball $B(x,r) \subseteq U$ we have:

$$u(x) = \int_{\partial B(x,r)} u dS$$

Problem 4. Let $\mathbf{F} : \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$ be continuous in the first variable and uniformly Lipschitz continuous in the second variable with Lipschitz constant $\gamma > 0$, i.e. it satisfies:

$$|\mathbf{F}(t,\mathbf{y}_1) - \mathbf{F}(t,\mathbf{y}_2)| \le \gamma |\mathbf{y}_1 - \mathbf{y}_2|$$

for any $\mathbf{y}_i \in \mathbb{R}^n$ and for any $t \in \mathbb{R}$. Let \mathbf{y}_1 and \mathbf{y}_2 be solutions in the interval $[t_0, T]$ to the problem:

$$\mathbf{y}_i'(t) = \mathbf{F}(t, \mathbf{y}_i(t))$$

for i = 1, 2 and $t \in [t_0, T]$.

a) Show that:

$$|\mathbf{y}_1(t) - \mathbf{y}_2(t)|^2 \le |\mathbf{y}_1(t_0) - \mathbf{y}_2(t_0)|^2 e^{2\gamma(t-t_0)}.$$

b) Use this to prove uniqueness of solution of the corresponding Initial Value Problem.

Problem 5. a) Using the separation of variables method, find a (formal) solution of the periodic heat problem:

$$\begin{cases} u_t - ku_{xx} = 0 & 0 < x < 2\pi, \ t > 0, \\ u(0,t) = u(2\pi,t), \ u_x(0,t) = u_x(2\pi,t) & t \ge 0, \\ u(x,0) = f(x) & 0 \le x \le 2\pi, \end{cases}$$

where f is a smooth periodic function.

b) Show that if v is an arbitrary partial derivative of the solution u, then $v(0,t) = v(2\pi,t)$, for all $t \geq 0$.

Problem 6. Let U be the open unit ball in \mathbb{R}^d .

a) Let

$$u(x) = |x|^{-\alpha}$$

For which values of $\alpha > 0$, $d \ge 1$, and p > 1 does u belong to $W^{1,p}(U)$?

b) Show that

$$u(x) = \log \log (1 + |x|^{-1})$$

 $u(x) = \log \log \left(1 + |x|^{-1}\right)$ belongs to $W^{1,2}(U)$ but does not belong to $L^{\infty}(U)$.

Part 3

Problem 7. Prove that there is at most one smooth solution of

$$\begin{cases} u_t - \Delta u = f & \text{in } U_T \\ \frac{\partial u}{\partial \nu} = 0 & \text{on } \partial U \times [0, T] \\ u = g & \text{on } U \times \{0\} \end{cases}$$

Problem 8. Let u be a solution of $\Delta u = u^3 - u$ on a bounded domain Ω . Assume that u = 0 on $\partial \Omega$. Show that $u \in [-1, 1]$ throughout Ω . Can the values ± 1 be achieved?

Problem 9. Consider the Poisson equation with Dirichlet boundary condition:

$$\begin{cases} -\Delta u = f & \text{in } U\\ u = 0 & \text{on } \partial U \end{cases}$$

where U is a bounded, open subset of \mathbb{R}^n and $f \in L^2(U)$. We know there exists a weak solution $u \in H^1_0(U)$. Prove that $u \in H^2_{loc}(U)$.