Fake Qual 1

PDE Qual Prep Seminar
Xavier Ramos Olivé
Summer 2018, UC Riverside

Instructions: Work 2 out of 3 problems in each of the 3 parts for a total of 6 problems.

Part 1

Problem 1. Give a direct proof that if U is bounded and $u \in \mathcal{C}_{1}^{2}\left(U_{T}\right) \cap \mathcal{C}\left(\bar{U}_{T}\right)$ solves the heat equation, then

$$
\max _{\bar{U}_{T}} u=\max _{\Gamma_{T}} u .
$$

Hint: Define $u_{\epsilon}:=u-\epsilon t$ for $\epsilon>0$, and show u_{ϵ} cannot attain its maximum over \bar{U}_{T} at a point in U_{T}.

Problem 2. Let $u_{1}, u_{2} \in \mathcal{C}^{2}(\Omega)$ solve the Laplace equation

$$
\begin{cases}\Delta u=f & \text { in } \Omega \\ \frac{\partial u}{\partial \nu}=g & \text { on } \partial \Omega .\end{cases}
$$

Prove that $u_{2}-u_{1}=c$, where c is constant.

Problem 3. (Wave equation in the half line) Recall that d'Alembert's formula:

$$
v(x, t)=\frac{1}{2}[g(x+t)+g(x-t)]+\frac{1}{2} \int_{x-t}^{x+t} h(y) d y
$$

provides us with a solution to the problem:

$$
\begin{cases}v_{t t}-v_{x x}=0 & \text { in } \mathbb{R} \times(0, \infty) \\ v=g, v_{t}=h & \text { on } \mathbb{R} \times\{0\}\end{cases}
$$

Consider the wave equation in the half line:

$$
\begin{cases}u_{t t}-u_{x x}=0 & \text { in } \mathbb{R}_{+} \times(0, \infty) \\ u=g, u_{t}=h & \text { on } \mathbb{R}_{+} \times\{0\} \\ u=0 & \text { on }\{0\} \times(0, \infty),\end{cases}
$$

where g, h are given, with $g(0)=h(0)=0$. Let \tilde{u}, \tilde{g}, \tilde{f} be the odd extensions of u, g, f to \mathbb{R}.
a) Show that \tilde{u} solves:

$$
\begin{cases}\tilde{u}_{t t}-\tilde{u}_{x x}=0 & \text { in } \mathbb{R} \times(0, \infty) \\ \tilde{u}=\tilde{g}, \tilde{u}_{t}=\tilde{h} & \text { on } \mathbb{R} \times\{0\}\end{cases}
$$

and solve for \tilde{u}.
b) Find $u(x, t)$.

Problem 4. Let $A(t)$ be a continuous function from t in \mathbb{R} to the space of square, real-valued matrices.
a) Show that for every solution of the (non-autonomous) linear system, $\dot{\mathbf{x}}=A(t) \mathbf{x}$, we have

$$
\|\mathbf{x}(t)\| \leq\|\mathbf{x}(0)\| e^{\int_{0}^{t}\|A(s)\| d s}
$$

where $\|A(s)\|$ is the operator norm and $\|\mathbf{x}(t)\|$ is the usual Euclidean norm.
b) Show that if $\int_{0}^{t}\|A(s)\| d s<\infty$ then every solution, $\mathbf{x}(t)$, has a finite limit as $t \rightarrow \infty$.

Problem 5. Solve the following wave equation using the Fourier transform:

$$
\left\{\begin{array}{ll}
\partial_{t t} u-\partial_{x x} u=0 \\
u(0, x)=\frac{1}{1+x^{2}}, \partial_{t} u(0, x)=0
\end{array} \quad \text { for } t>0, x \in \mathbb{R}\right.
$$

(The solution will be in the form of an integral that you need not try to integrate in closed form.)

Problem 6. Let $u(x, y)$ be a solution to the equation:

$$
\mathbf{b}(x, y) \cdot \nabla u(x, y)+u=0
$$

for $\mathbf{b}=(a(x, y), b(x, y))$ a vector field whose components are positive and differentiable functions in \mathbb{R}^{2}. Define:

$$
D=\left\{(x, y) \in \mathbb{R}^{2}:|x|<1,|y|<1\right\} .
$$

a) Prove that the projection on the x, y-plane of each characteristic curve passing through a point in D intersects the boundary of D at exactly two points.
b) Show that if u is positive on the boundary of D, then it is positive at every point in D.
c) Suppose that u attains a local minimum (maximum) at a point $\left(x_{0}, y_{0}\right) \in D$. Evaluate $u\left(x_{0}, y_{0}\right)$.
d) Denote by m the minimal value of u on the boundary of D. Assume $m>0$. Show that $u(x, y) \geq m$ for all $(x, y) \in D$.
Remark: This is an atypical example of a first-order PDE for which a maximum principle holds true.

PART 3

Problem 7. Suppose u is a smooth solution to

$$
\begin{cases}\Delta u=u^{3}+u & \text { in } U \\ u=0 & \text { on } \partial U\end{cases}
$$

Show that $u \equiv 0$ in U using maximum principle.

Problem 8. Suppose u is a smooth solution to

$$
\left\{\begin{array}{l}
u_{t}-\Delta u+c u=0 \\
u=0 \\
u=g
\end{array}\right.
$$

where the function c satisfies $c \geq \delta>0$. Show that $|u(x, t)| \leq C e^{-\gamma t}$.

Problem 9. Assume U is connected. Consider the Poisson's equation with the Neumann boundaryvalue problem

$$
\begin{cases}-\Delta u=f, & \text { on } U \\ \frac{\partial u}{\partial n}=0, & \text { on } \partial U\end{cases}
$$

a) State the definition of the weak solution to this problem;
b) Show that for $f \in L^{2}(U)$, the above problem has a weak solution if and only if $\int_{U} f d x=0$;
c) If $f=0$, use the energy method to show that the only smooth solutions of this problems are $u=C$, for some constant C.

