Extra Credit Homework

MATH 10A, Summer Session E, UC Riverside 2018
Problem 1. Euclidean space of dimension 4, \mathbb{R}^{4}, can be described as the set of points labeled with quadruples (x, y, z, w), where x, y, z, w are real numbers. In analogy to what happens in \mathbb{R}^{2} and \mathbb{R}^{3}, we can think of vectors $\mathbf{v}=\left(v_{1}, v_{2}, v_{3}, v_{4}\right)$ as arrows that bring us from one point to another. The basic operations with vectors in \mathbb{R}^{4} can be summarized as:
(1) $\mathbf{v}+\mathbf{w}=\left(v_{1}+w_{1}, v_{2}+w_{2}, v_{3}+w_{3}, v_{4}+w_{4}\right)$
(2) $\alpha \mathbf{v}=\left(\alpha v_{1}, \alpha v_{2}, \alpha v_{3}, \alpha v_{4}\right)$
(3) $\mathbf{v} \cdot \mathbf{w}=v_{1} w_{1}+v_{2} w_{2}+v_{3} w_{3}+v_{4} w_{4}$
(4) $\|\mathbf{v}\|=\sqrt{v_{1}^{2}+v_{2}^{2}+v_{3}^{2}+v_{4}^{2}}$
where $\mathbf{v}=\left(v_{1}, v_{2}, v_{3}, v_{4}\right)$ and $\mathbf{w}=\left(w_{1}, w_{2}, w_{3}, w_{4}\right)$ are any two vectors in \mathbb{R}^{4}, and α is any real number.
a) Knowing that the formula $\mathbf{v} \cdot \mathbf{w}=\|\mathbf{v}\|\|\mathbf{w}\| \cos \theta$ still holds (as the proof we did in class works in any dimension), find the angle between the vectors $\mathbf{v}=(1,0,-1,2)$ and $\mathbf{w}=(0,1,2,1)$.
b) Show that the vector $\mathbf{u}=(1,-2,1,0)$ is perpendicular to both \mathbf{v} and \mathbf{w}.
c) Consider the parametric equations of the plane $\pi(t, s)=(1+t, 2+s,-1-t+2 s, 2 t+s)$ and the line $l(r)=(3+r,-1-2 r, r, 2)$. The direction vector of the line is \mathbf{u} and the direction vectors of the plane are \mathbf{v} and \mathbf{w}, hence the line is perpendicular to the plane (as you showed in part (b)). Show that, despite this, the line does not intersect the plane.

Remark: in \mathbb{R}^{3}, a line and a plane are either parallel, or they intersect at a point. In particular, if a line is perpendicular to a plane, it will always intersect it. In \mathbb{R}^{4}, however, there is enough room for a plane and a line to cross each other, without intersecting, and without being parallel (in a similar way that two lines in \mathbb{R}^{3} might cross each other, although their direction vectors might be perpendicular).

Problem 2. Given a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$, we define the Laplacian of f to be

$$
\Delta f:=\frac{\partial^{2} f}{\partial^{2} x}+\frac{\partial^{2} f}{\partial^{2} y}
$$

This is a very common differential operator, that appears in many areas of physics: to describe waves, to study the electric or the gravitational potential, to talk about kinetic energy in quantum mechanics, etc.

Sometimes, when studying a physical problem, one assumes that the problem has some kind of symmetry; for instance, we could assume that a given problem has rotational symmetry. If that was the case, polar coordinates would be a better way of describing the problem than cartesian coordinates. However, if we write our function in polar coordinates $f=f(r(x, y), \theta(x, y))$, computing the Laplacian of f is not the same as taking second derivatives with respect to r and with respect to θ and adding them together, that is:

$$
\Delta f(r, \theta) \neq \frac{\partial^{2} f}{\partial^{2} r}+\frac{\partial^{2} f}{\partial^{2} \theta}
$$

a) Consider the function $f(x, y)=x^{2}+y^{2}$. Compute Δf and write the resulting function in polar coordinates. Then, write f in polar coordinates, and compute $\frac{\partial^{2} f}{\partial^{2} r}+\frac{\partial^{2} f}{\partial^{2} \theta}$. Show that the results are not the same (this is an example of the assertion above).
b) Knowing that $r=\sqrt{x^{2}+y^{2}}$, show that:

$$
\begin{aligned}
& \frac{\partial r}{\partial x}=\frac{x}{r}, \quad \frac{\partial r}{\partial y}=\frac{y}{r} \\
& \frac{\partial^{2} r}{\partial x^{2}}=\frac{1}{r}-\frac{x^{2}}{r^{3}}, \quad \frac{\partial^{2} r}{\partial y^{2}}=\frac{1}{r}-\frac{y^{2}}{r^{3}}
\end{aligned}
$$

c) Using that $x=r(x, y) \cos (\theta(x, y))$, take derivatives in both sides with respect to x to show:

$$
\frac{\partial \theta}{\partial x}=-\frac{\sin \theta}{r}, \frac{\partial^{2} \theta}{\partial^{2} x}=\frac{2 \sin \theta \cos \theta}{r^{2}}
$$

d) Do the same as in part c), this time taking derivatives with respect ot y in $y=r(x, y) \sin (\theta(x, y))$, to show:

$$
\frac{\partial \theta}{\partial y}=\frac{\cos \theta}{r}, \frac{\partial^{2} \theta}{\partial^{2} y}=-\frac{2 \sin \theta \cos \theta}{r^{2}}
$$

e) Use chain rule twice in $f(r(x, y), \theta(x, y))$ to show:

$$
\frac{\partial^{2} f}{\partial x^{2}}=\frac{\partial^{2} f}{\partial^{2} r}\left(\frac{\partial r}{\partial x}\right)^{2}+\frac{\partial f}{\partial r} \frac{\partial^{2} r}{\partial x^{2}}+\frac{\partial^{2} f}{\partial \theta^{2}}\left(\frac{\partial \theta}{\partial x}\right)^{2}+\frac{\partial f}{\partial \theta} \frac{\partial^{2} \theta}{\partial x^{2}}+2 \frac{\partial^{2} f}{\partial r \partial \theta} \frac{\partial r}{\partial x} \frac{\partial \theta}{\partial x}
$$

and

$$
\frac{\partial^{2} f}{\partial y^{2}}=\frac{\partial^{2} f}{\partial^{2} r}\left(\frac{\partial r}{\partial y}\right)^{2}+\frac{\partial f}{\partial r} \frac{\partial^{2} r}{\partial y^{2}}+\frac{\partial^{2} f}{\partial \theta^{2}}\left(\frac{\partial \theta}{\partial y}\right)^{2}+\frac{\partial f}{\partial \theta} \frac{\partial^{2} \theta}{\partial y^{2}}+2 \frac{\partial^{2} f}{\partial r \partial \theta} \frac{\partial r}{\partial y} \frac{\partial \theta}{\partial y}
$$

f) Use the results above, to conclude that:

$$
\Delta f(r, \theta)=\frac{\partial^{2} f}{\partial r^{2}}+\frac{1}{r} \frac{\partial f}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} f}{\partial \theta^{2}}
$$

g) Finally, use the formula in f) to compute Δf of the function in a). I.e., write the function $f(x, y)=x^{2}+y^{2}$ in polar coordinates, and use the formula above to compute Δf.

