
Extra Credit Homework
MATH 10A, Summer Session E, UC Riverside 2018

Problem 1. Euclidean space of dimension 4, R4, can be described as the set of points labeled with
quadruples (x, y, z, w), where x, y, z, w are real numbers. In analogy to what happens in R2 and R3,
we can think of vectors v = (v1, v2, v3, v4) as arrows that bring us from one point to another. The
basic operations with vectors in R4 can be summarized as:

(1) v + w = (v1 + w1, v2 + w2, v3 + w3, v4 + w4)
(2) αv = (αv1, αv2, αv3, αv4)
(3) v ·w = v1w1 + v2w2 + v3w3 + v4w4

(4) ‖v‖ =
√
v21 + v22 + v23 + v24

where v = (v1, v2, v3, v4) and w = (w1, w2, w3, w4) are any two vectors in R4, and α is any real
number.

a) Knowing that the formula v ·w = ‖v‖‖w‖ cos θ still holds (as the proof we did in class works
in any dimension), find the angle between the vectors v = (1, 0,−1, 2) and w = (0, 1, 2, 1).

b) Show that the vector u = (1,−2, 1, 0) is perpendicular to both v and w.

c) Consider the parametric equations of the plane π(t, s) = (1+ t, 2+s,−1− t+2s, 2t+s) and
the line l(r) = (3 + r,−1 − 2r, r, 2). The direction vector of the line is u and the direction
vectors of the plane are v and w, hence the line is perpendicular to the plane (as you showed
in part (b)). Show that, despite this, the line does not intersect the plane.

Remark: in R3, a line and a plane are either parallel, or they intersect at a point. In
particular, if a line is perpendicular to a plane, it will always intersect it. In R4, however,
there is enough room for a plane and a line to cross each other, without intersecting, and
without being parallel (in a similar way that two lines in R3 might cross each other, although
their direction vectors might be perpendicular).



Problem 2. Given a function f : R2 → R, we define the Laplacian of f to be

∆f :=
∂2f

∂2x
+
∂2f

∂2y
This is a very common differential operator, that appears in many areas of physics: to describe

waves, to study the electric or the gravitational potential, to talk about kinetic energy in quantum
mechanics, etc.

Sometimes, when studying a physical problem, one assumes that the problem has some kind of
symmetry; for instance, we could assume that a given problem has rotational symmetry. If that was
the case, polar coordinates would be a better way of describing the problem than cartesian coordi-
nates. However, if we write our function in polar coordinates f = f(r(x, y), θ(x, y)), computing the
Laplacian of f is not the same as taking second derivatives with respect to r and with respect to θ
and adding them together, that is:

∆f(r, θ) 6= ∂2f

∂2r
+
∂2f

∂2θ
a) Consider the function f(x, y) = x2 + y2. Compute ∆f and write the resulting function in

polar coordinates. Then, write f in polar coordinates, and compute ∂2f
∂2r

+ ∂2f
∂2θ

. Show that
the results are not the same (this is an example of the assertion above).

b) Knowing that r =
√
x2 + y2, show that:

∂r

∂x
=
x

r
,
∂r

∂y
=
y

r

∂2r

∂x2
=

1

r
− x2

r3
,
∂2r

∂y2
=

1

r
− y2

r3

c) Using that x = r(x, y) cos(θ(x, y)), take derivatives in both sides with respect to x to show:

∂θ

∂x
= −sin θ

r
,
∂2θ

∂2x
=

2 sin θ cos θ

r2

d) Do the same as in part c), this time taking derivatives with respect ot y in y = r(x, y) sin(θ(x, y)),
to show:

∂θ

∂y
=

cos θ

r
,
∂2θ

∂2y
= −2 sin θ cos θ

r2

e) Use chain rule twice in f(r(x, y), θ(x, y)) to show:

∂2f

∂x2
=
∂2f

∂2r

(
∂r

∂x

)2

+
∂f

∂r

∂2r

∂x2
+
∂2f

∂θ2

(
∂θ

∂x

)2

+
∂f

∂θ

∂2θ

∂x2
+ 2

∂2f

∂r∂θ

∂r

∂x

∂θ

∂x

and

∂2f

∂y2
=
∂2f

∂2r

(
∂r

∂y

)2

+
∂f

∂r

∂2r

∂y2
+
∂2f

∂θ2

(
∂θ

∂y

)2

+
∂f

∂θ

∂2θ

∂y2
+ 2

∂2f

∂r∂θ

∂r

∂y

∂θ

∂y

f) Use the results above, to conclude that:

∆f(r, θ) =
∂2f

∂r2
+

1

r

∂f

∂r
+

1

r2
∂2f

∂θ2

g) Finally, use the formula in f) to compute ∆f of the function in a). I.e., write the function
f(x, y) = x2 + y2 in polar coordinates, and use the formula above to compute ∆f .


